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Overview:
Who, what, where, when, why, (and how)?

What do we really mean by friction management?

When have some of the major developments in friction management evolved?
Where is friction management used?

Why is friction management important?

How is effective friction management achieved?

Who is involved in friction management?
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What do we really
mean by friction
management?

Kalousek, J, K Hou, E Magel, and K Chiddick. “The Benefits of Friction
Management: A Third Body Approach,” Proceedings of the World
Congress on Railway Research (WCRR 1996), Colorado Springs, 1996.
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Getting “inside” the wheel-rail interface

Management A Th/rd Body Approach. In Proceed/ngs of the World Congress
on Railway Research (WCRR 1996), 8. Colorado Springs, 1996.
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The traction-creepage curve
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Manipulating the third-body layer
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* Replotted from: A. Matsumoto, Y. Sato, H. Ono, Y. Wang, Y. Yamamoto, M.
Tanimoto and Y. Oka, Creep force characteristics between rail and wheel
on scaled model, Wear, Vol 253, Issues 1-2, July 2002, pp 199-203
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Practicalities of controlling the third body layer
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Eadie, D T, H Harrison, R Kempka, R Lewis, A Keylin, and N Wilson. “Field Assessment of Friction and Creepage with a
New Tribometer.” In Proceedings of the 11th International Conference on Contact Mechanics and Wear of Rail/Wheel
Systems, 10. Delft, the Netherlands, 2018.
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When have some of the major developments in
friction management evolved?
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APPARATTUS FOR OILING RAILWAY TRACKS.
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T.L. Ennis: Apparatus for Oiling Railway Tracks, USPTO US457045A. El Paso, Texas, issued August 4, 1891.
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A (very) broad timeline

Late 1800’s / Early 1900'’s:

— Early patents begin to appear in the literature

Mid-Late 1900’s:

— General adoption of Gauge Face & Wheel Flange lubrication in specific settings

Late 1900’s:

— Rapid evolution of application system technologies and lubrication consumables

1990’s - Today

—  First commercial introduction of Top of Rail Friction Management

— Rapid developments in Friction Modifiers, Traction Enhancers, and Lubricants (esp. retentivity
and consistency across wide temperature ranges)

— Continued developments in application systems and remote monitoring technologies
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Where is friction management used?

11
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Broadly defined implementation scenarios

* Freight / Heavy Haul

— Often (but not always) a territory-wide, trackside system based approach

— Primary objectives tend to include reductions in wheel and rail wear, RCF, curvin forces track
structure degradation, and fuel consumption. %

* Passenger Rail

— In many cases a more “surgical” approach, targeting (e.g.) specific problem areas for curving
noise, wear and corrugation development, and track component failure.

— Also several cases of system-wide and/or fleet-wide programs adopted to maximize (e.g.) wheel
and/or rail life.
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Why is friction management important?

 Examples: Reductions in...
— Curving forces and/or derailment risk
— Rail / wheel wear and RCF
— Curving noise
— Corrugations

13
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Curving Forces (Two-Axle Vehicle, Sharp Curve)

Trailing Axle, High Rail:

R< I:\,equilibrium
- Negative Longitudinal Creepage

- Longitudinal Creep Force [

Reaction Forces (felt by track)

Trailing Axle, Low Rail:
R> Requilibrium

- Positive Longitudinal Creepage
- Longitudinal Creep Force

Q RAIL TRANSIT SEMINAR - JUNE 6

ﬁ

leadinc Avle Hich Rail (Tread):

Leading Axle, High Rail (Flange):
R>>R

equilibrium

— Positive Longitudinal Creepage
— Longitudinal Creep Force

Plus:

Normal force (keeps vehicle on
track)

\I_\Ul_\’

Leading Axle, Low Rail:
Angle of Attack

- Primarily Lateral Creepage
— Lateral Creep Force
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Friction management and
vehicle Steering

TOR Friction Control:
Reduction in COF at TOR/Tread
— Reductions in TOR/Tread Creep
Forces and Negative Steering Moments
— Reductions in Lateral Forces, Wear,
Energy, etc.
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Curving forces and wheel oy,

fiicti
n " " 4 coef;;zi:rﬂ
climb probability e
Es
3
e 25 03
Low Rail L/V Histogram All Trains ' 05
12% L 'E 15
- - - -No Lube S
Gauge Face Lube § 1
— — Gauge Face and TOR 05
10% —TOR
0 ‘ ‘ ‘ : . : ‘ :
» 64 66 68 70 72 74 76 78 80 82
% Maximum contact angle (degrees)
< 8%
g
§ 0.5
)
;lj 6% passenger truck
2 0.4
c
8 4%
2 /\\Gage-face lubrication 503
&
2% s
O
\ =02
0% ; \ —+— conformal
0 0.2 0.4 0.6 0.8 1 01— = closely-conformal
L . ’ —&— conformal 2pt
/V ratio »- non-conformal 2pt
L/V goes up, but Weinstock limit also. 0 . .
Bath dry Gage-face Friction High rail
. . i lubricated controlled over-
E. Magel: Vehicle-Track Interaction & Dynamics, presented at the 24th Annual lubricated

Wheel Rail Interaction Conference, Chicago, 2018.
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»  Wear Types:

— Adhesion dsht/
— Surface Fatigue

. Measu - Nt =
— Abrasion N e 7 Messuibmen

- COI’FOSIOI’] 7 < 5 4 ﬁ ‘I~ Reference
— Rolling Contact Fatigue

— Plastic Flow l _
vV :@\L ¢ proportional to
 “Archard” Wear Law: H COF

— V =volume of wear
— N =normal load N
— [ = sliding distance (i.e. creepage)
— H = hardness

— ¢ = wear coefficient
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Shakedown and rolling contact fatigue (RCF)
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E. Magel, P. Mutton, A. Ekberg, and A. Kapoor, “Rolling contact fatigue, wear
and broken rail derailments,” Wear, vol. 366—-367, pp. 249-257, Nov. 2016 traction coefficient T/N
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Wear and rolling contact fatigue (RCF)

R350HT

FM 100k F & FM 100k m

FM 400k

R. Stock, D. T. Eadie, D. Elvidge, and K. Oldknow: Influencing rolling contact fatigue through top of rail friction modifier
application — A full scale wheel-rail test rig study, Wear, vol. 271, no. 1-2, pp. 134-142, May 2011
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Curving Noise
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Meehan, Paul A., and Xiaogang Liu. “Wheel Squeal Noise Control under Water-Based Friction Modifiers Based on
Instantaneous Rolling Contact Mechanics.” Wear 440-441 (December 2019): 203052.

Q RAIL TRANSIT SEMINAR - JUNE 6 SF SIMON FRASER WRI 2023

UNIVERSITY



21

Curving noise
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Sound pressure (LLeq) levels measured in a 90m radius curve on a European light rail system
under baseline conditions (red line, square markers) and with friction modifier applied (blue
line, diamond markers).

M Santoro: The Effectiveness of Gauge Face, Restraining Rail, and TOR FM in Mitigating Curving
Noise, Presented at the ICRI 2022 Workshop, Ottawa, Canada, 29pp, 2022.
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Corrugations
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Fig. 8. Corrugation at 25-30 mm wavelength arising from excitation of the baseplate on the railpad.

Fig. 7. Severe corrugation on the low rail of curve in a metro system.

Grassie, Stuart L. “Rail Corrugation: Advances in Measurement, Understanding and
Treatment.” Wear 258, no. 7-8 (March 2005): 1224-34
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Figure 2. Structure of the linearised wheel-rail contact model.

Daniel, W. I.T., C.-Y. Cheng, and P.A. Meehan. “Modelling the Effects of Friction Modifiers
on Rail Corrugation in Cornering.” Vehicle System Dynamics 46, 9, 845—66.
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Corrugations

N " ,

Corrugation development in curved track The same location, with friction
on a European metro system under dry modifier applied, 155 days after
conditions, 65 days after grinding grinding

D.T. Eadie, M. Santoro, K. Oldknow and Y. Oka: Field Studies of the Effect of Friction Modifiers on Short Pitch
Corrugation Generation, in Proceedings of the 7th International Conference on Contact Mechanics and Wear
of Rail/Wheel Systems (CM2006), Brisbane, Australia, 9pp, 2006.
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Pausing to consider...

* The relationship between desired benefit(s), effective coverage distances, and
wheel-rail friction characteristics in TOR friction management applications...

Benefit type Effective coverage distances Frictional properties needed
(Hypothesis)

L/V reductions ++++ “Bulk” reductions in COF
Wear & RCF ++++ “Bulk” reductions in COF
Curving Noise + Controlled traction-creepage
(esp. Squeal) relationship

Corrugations ++ Mix of bulk reductions and

traction-creepage
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How is effective friction
management achieved?
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Friction Management Approaches

[Application%
[Trackside} [ Mobile }

[Gauge/FIange} [TOR/TreadJ

GF TOR Friction | T
Lubrication Modifiers Liquid/Solid Liquid/Solid
Lubrication Friction

Modifiers
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As | was thinking about this presentation on May the 4t,
| paused to reflect...

Could
Chewbacca
really exist?

g RAIL TRANSIT SEMINAR - JUNE 6 SIMON FRASER WRI 2023

UNIVERSITY



29

The Drake Equation™

“The Drake equation is a probabilistic argument used to estimate the number of active,
communicative extraterrestrial civilizations in the Milky Way Galaxy”

“The equation was formulated in 1961 by Frank Drake, not for purposes of quantifying the
number of civilizations, but as a way to stimulate scientific dialogue at the first scientific
meeting on the search for extraterrestrial intelligence (SETI).”
N=R.ef,°n, °f; °f; °F °L

— N =the number of civilizations in the Milky Way galaxy with which communication might be possible

— R,=the average rate of star formation in our Galaxy

— [, =the fraction of those stars that have planets

— n,=the average number of planets that can potentially support life per star that has planets

— f,=the fraction of planets that could support life that actually develop life at some point

—  f;=the fraction of planets with life that actually go on to develop intelligent life (civilizations)

Dr. Frank Drake &

— f.=the fraction of civilizations that develop a technology that releases detectable signs of their existence into space
— L =the length of time for which such civilizations release detectable signals into space

*https://en.wikipedia.org/wiki/Drake_equation
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Coming back to Earth:
Conceptualizing the reliability “success path”
for a friction management system

Input —— > > Output
(“Success” or “Failure)

Reliability Blocks

Question: how should
we define “success”?
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Defining success(?)

* Friction has been controlled to the desired level*, at the
intended wheel-rail interface location(s), at the intended
times.

*and in some cases with a specific traction-creepage relationship

Creep Force Positive (Rising) Friction

Neutral Friction
A

RN Negative (Falling) Friction
N
N\
/ *- Creep Saturation

Creepage
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What are the reliability factors?

Working in reverse (a rough sketch)...

R,: FM material has not been consumed/depleted from
the intended wheel-rail interface location by passing traffic

R¢: FM material was deposited at, or carried to, the
intended location at the wheel-rail interface in sufficient
quantity to achieve the specific intended benefit(s)

Rs: Applicator applied the intended amount of FM
material, at the intended location, at the intended time

R,: FM material was supplied to applicator in the
intended/expected physical state (e.g. viscosity, pressure)

R;: Application system controls functioned as intended
R,: Sensing components functioned as intended
R,: FM material was available in reservoirs (e.g. tanks)
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How can we improve the R values?

Examples...

- Material selection

- Application rates

- Applicator type and configuration

- Applicator placement

- Applicator spacing

- Proactive and well-resourced
equipment maintenance

- Proactive and well-resourced
consumable refilling

- Remote monitoring (and
control?...)

- Performance verification
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Measurement & Verification

Example: COF ‘ i | [M'-' [
measurement using NI I -.
“tribometer” systems

Example: Lateral / Vertical force
measurement using instrumented
cribs or wheelsets

(esp. TOR friction control)

-
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Who is involved in friction
management?

34

Q RAIL TRANSIT SEMINAR - JUNE 6 SIMON FRASER WRI 2023

UNIVERSITY



Involvement, education, buy-in,
commitment, and resourcing are critical

Track and/or vehicle maintenance
personnel

Area supervisors
Engineering and purchasing resources
Senior management

Others...
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Conclusions:
Who, what, where, when, why, (and how)?

What do we really mean by friction management?

When have some of the major developments in friction management evolved?
Where is friction management used?

Why is friction management important?

How is effective friction management achieved?

Who is involved in friction management?
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Thank You
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